IMPEDANCE BASED CHARACTERISATION OF NANOPARTICLE SUSPENSIONS

Dr Anne Barnett

anne.barnett@izon.com
Contents

Us...
The Technology
Nanomedicine Case Studies
Us...

Christchurch, New Zealand

Oxford, United Kingdom
Customers & Research Partners
ASIA PACIFIC

National Institute of Water and Atmospheric Research (NIWA)
Commonwealth Scientific and Industrial Research Organisation (CSIRO)
National Measurement Institute
University of Melbourne
University of New South Wales
University of Queensland
University of South Australia
University of Sydney
Hong Kong Polytech University
The Chinese University of Hong Kong
University of Kitakyushu
Seoul National University
Auckland University
Cawthon Institute
Academia Sinica
Environmental Science & Research (ESR)
Industrial Research Limited (IRL)
Massey University
Resene Paint Co.
University of Otago
Victoria University of Wellington
ASTAR Singapore
MacDiarmid Institute (Vic)
Singapore Eye Research Institute
Nanyang Technological University
Invirogen
Customers & Research Partners
UK / EUROPE

University of Veterinary Medicine, Vienna
GlaxoSmithKline
Aarhus University
Unilever
University of East Anglia
University of Nottingham
University of Oxford
University of Portsmouth
University of the West of England
Synthelis
Center for Applied Nanotechnology Hamburg
Max Planck Institute
Churchill Hospital/John Radcliffe Hospital
Siemens
University of Potsdam
Agri-Food and Biosciences Institute
Dublin City University
University of Glasgow
Amsterdam Medical Centre
University College Dublin
Nanovector
University of Madeira
Sepmag
GE Healthcare
University of Applied Sciences Northwestern Switzerland
Erasmus Medical Centre
Jenner Institute
Customers & Research Partners
NORTH AMERICA

Aeras
American Type Culture Collection (ATCC)
Amgen
Aura Biosciences
Beckman Coulter
Boston University
Draper Laboratories
Duke University
Harvard University
Liquidia Technologies
Massachusetts Institute of Technology (MIT)

Memorial Hospital
Rhode Island University
National Cancer Institute
Old Dominion University
T2 Biosystems
University of California, Santa Cruz
University of Houston
University of Massachusetts Lowell
University of Wisconsin–Madison
US Army
The Salk Institute
The Technology
How does it work?

Resistive Pulse Sensing = Single particle detection

Please see our website to view this animation (SIOS) animation:

http://www.izon.com/about-us/the-technology/
Detecting blockade events

- Current (nA)
- Time
- Magnitude
- Duration
What can you measure?

• Any surface charge (+ve or –ve), no charge
• Size range ~ 50nm – 10µm
• Wide range of particles, synthetic and biological
 • Viruses e.g. Adenovirus, Lentivirus, Dengue, Baculovirus, Influenza, HIV...
 • Bacteria, Yeast, Phages
 • Blood particles – platelets, red blood cells
 • Polystyrene particles, poly(meth)acrylates
 • Metallic nanoparticles, Magnetic particles, Silica
 • Liposomes, Micelles, Exosomes and other vesicles
 • Protein Bioconjugates, Lipids, Cubosomes
 • Emulsions (oil-in-water)
• ...
Nanomedicine
Case Studies
Case Study 1: Characterisation of Liposome Preparations

- Characterise in physiologically relevant solutions (aggregation effects easily measured and quantified)
- Rapid, accurate, repeatable counting and sizing
- Statistically significant (few hundred or thousand counts)
- Conceptually simple measurement. No complex algorithms, no additional input parameters
- Small sample volume

Case Study 2: Reaction Dynamics for Diagnostic Assays

- Using aggregation effects to advantage
Case Study 1: Characterisation of Liposome Preparations

Assessment of Aggregation effects upon freeze/thaw treatment

<table>
<thead>
<tr>
<th>Sample</th>
<th>Particle concentration</th>
<th>Size d_{90}/d_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liposome</td>
<td>3.5×10^{13} particles/mL</td>
<td>1.3</td>
</tr>
<tr>
<td>Liposome (frozen)</td>
<td>2.9×10^{13} particles/mL</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Samples provided by University of Oxford, Dept of Biochemistry
Detection of Surface Modification & Functionalisation Reactions

Confirm PEGylation of Liposomes

Case Study 1: Characterisation of Liposome Preparations*

Size Change

Charge Change

*Samples provided by University of Oxford, Dept of Biochemistry
Case Study 2: Reaction Dynamics for Diagnostic Assays

Immuno Nano Metrology (INM)

Please see our website to view this animation (INM) animation:

http://www.izon.com/about-us/the-technology/
Optimisation of particle immunoassays

Insitu: Real time creation of dimers and higher order aggregates upon introduction of antigen to antibody coated particle population in fluid cell.
Summary – Application in Nanomedicine

- Particle-by-particle measurement solution for:
 - Concentration
 - Sizing
 - Surface functionalisation (confirmation)

- Solution for complex particle systems
 - Diagnostic system development
 - Multi-dimensional analysis
For Particles 2011 participants...

- **New Zealand wine and networking**
 - Monday 11th July 19:45 after poster session
 - Main Foyer
 - Register at IZon booth

- **Interested in a qNano?**
 - Place an order for a qNano within one month of Particles 2011 and we will fly one researcher from your group to our New Zealand labs to work with our scientists for training and developing your application.
Thank you