Human Clinical Studies of Ultrafine Particles

Mark W. Frampton MD
University of Rochester Medical Center
Rochester, NY, USA
TABLE 3. Pooled Results of Poisson Regressions of the Association of Hospital Readmissions and Same-Day Air Pollution Concentrations

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Unit</th>
<th>Hospital Readmissions, RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Myocardial Infarction Angina Pectoris Cardiac*</td>
</tr>
<tr>
<td>PNC</td>
<td>10 000/cm³</td>
<td>1.039 (0.998–1.082)† 1.020 (0.992–1.048) 1.026 (1.005–1.048)</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>10 μg/m³</td>
<td>1.026 (0.996–1.058) 1.008 (0.986–1.032) 1.021 (1.004–1.039)</td>
</tr>
<tr>
<td>CO</td>
<td>0.2 mg/m³ (0.172 ppm)</td>
<td>1.022 (0.998–1.047) 1.009 (0.992–1.026) 1.014 (1.001–1.026)</td>
</tr>
<tr>
<td>NO₂</td>
<td>8 μg/m³ (4.16 ppb)</td>
<td>1.028 (0.997–1.060) 1.032 (1.006–1.058) 1.032 (1.014–1.051)</td>
</tr>
<tr>
<td>O₃†</td>
<td>15 μg/m³ (7.5 ppb)</td>
<td>1.000 (0.954–1.048) 1.044 (1.012–1.077) 1.026 (1.001–1.051)</td>
</tr>
</tbody>
</table>

*Hospital admissions for acute myocardial infarction, angina pectoris, dysrhythmia, or heart failure.

†Random-effects model.

‡Daily maximum 8-hour average.
Do UFP Contribute to PM-Related Cardiovascular Disease?

- Why might UFP be important in CV disease?
- UFP deposition in the respiratory tract
- Human clinical studies of carbon UFP
Ultrafine Particles

- UFP: <100 nm
- High surface area
- Evade macrophage phagocytosis
- Predicted high pulmonary deposition
- May enter lung interstitium and blood
Fractional Deposition of Inhaled Particles in the Human Respiratory Tract
(ICRP Model, 1994; Nose-breathing)

Figure courtesy of J. Harkema
Pulmonary Capillaries
UFP Beyond the Airways
Geiser et al., EHP 2005
Ambient Ultrafine Particles Have Oxidant Activity

Li et al., Environ Health Perspect 2003
Question: Does UFP exposure affect the circulation?

- Pulmonary vs Systemic
- Implications for cardiac outcomes
Experimental Protocol

UFP or Air

Symptoms
Phlebotomy
Exhaled NO
DLCO
Spirometry
Oximetry

Resting HRV
Flow-mediated dilatation
Exposure to Carbon UFP

- Count median diameter ~26 nm, GSD ~1.6
- 2 hrs by mouthpiece
- Intermittent exercise
Effects of Ultrafine Particles
10 to 50 µg/m³ for 2 hr

No effects on:
- Symptoms
- Lung function
- Airway inflammation
- Soluble markers of inflammation
- Cardiac rhythm, ST segment of ECG
A noninvasive marker of pulmonary vascular effects:

blood leukocyte expression of adhesion molecules
Leukocyte Recruitment in Inflammation
Blood Leukocytes: Markers of Vascular Events

Interactions of Blood and the Pulmonary Circulation, 2002
Change in Monocyte ICAM-1 Expression 3.5 h after Exposure

Frampton et al., Environ Health Persp 2006

ANOVA exposure effect
p = 0.012
Pulmonary Diffusing Capacity for CO (D\textsubscript{L}CO):
Sensitive to changes in pulmonary capillary blood volume
Hypothesis: Pulmonary vascular effects of PM—a function of particle size and surface area?

<table>
<thead>
<tr>
<th></th>
<th>Mass (µg/m³)</th>
<th>Number (particles/cm³)</th>
<th>Count Median Diameter (nm)</th>
<th>GSD</th>
<th>Surface Area m²/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFP</td>
<td>55 ± 2.8</td>
<td>9.8x10⁶ ± 1.3</td>
<td>32 ± 1.2</td>
<td>1.63 ± 0.02</td>
<td>750</td>
</tr>
<tr>
<td>FP</td>
<td>114 ± 20.9</td>
<td>867 ± 155</td>
<td>292 ± 23.7</td>
<td>1.71 ± 0.05</td>
<td>7</td>
</tr>
</tbody>
</table>
Conclusion: Carbon UFP exposure may alter pulmonary vascular endothelial function in healthy subjects.

Does exposure to UFP alter systemic endothelial function?
Systemic Endothelial Function:
Forearm Flow-Mediated Dilatation
Proposed UFP Vascular Effects

Before Exposure

PM
AM
NO
OONO-

Monocyte
CD11a/CD18
TF
TF

O2-

Fibrin & platelet deposition

After Exposure

Platelets

Proposed UFP Vascular Effects
Summary & Speculation

- UFP fractional deposition high, increases with exercise and asthma
- UFP may impair pulmonary & systemic endothelial function
- Effects on endothelial function may underlie diverse cardiovascular effects
- Likely role for reactive oxygen species & NO
- Relative absence of airway effects
- Vascular effects of ambient UFP may be greater
Acknowledgements

- U of R:
 - Mark Utell
 - Günter Oberdörster
 - Alison Elder
 - Mark Taubman
 - Paul Morrow
 - Yuchau Chen
 - William Beckett
 - Tony Pietropaoli
 - Wojciech Zareba
 - Charles Francis
 - Carol-Lynn Petronaci
 - Alpa Shah
 - David Chalupa
 - Lauren Frasier
 - Donna Speers
 - Judith Stewart
 - Robert Gelein

- Clarkson:
 - Philip Hopke

- Emory:
 - Arshad Quyyumi

- US EPA:
 - Bob Devlin

- Harvard:
 - Petros Koutrakis

- Funding:
 - HEI
 - EPA
 - NIEHS
 - EPRI
 - NYSERDA