X-ray Imaging and Spectroscopy of Individual Nanoparticles

A. Fraile Rodríguez, F. Nolting
Swiss Light Source
Paul Scherrer Institut, Switzerland

J. Bansmann
Dept of Surface Chemistry and Catalysis
Universität Ulm, Germany

A. Kleibert
Institut für Physik,
Universität Rostock, Germany

U. Wiedwald
Dept of Solid State Physics
Universität Ulm, Germany

D \sim 8 \text{ nm}
Magnetism in reduced dimensions

- Intrinsic properties
- Interparticle interactions
- Finite-size effects
- Size, aspect ratio distribution
- Surface effects

Nanomagnetism
Magnetism in reduced dimensions

Superparamagnetism

Shape-dependent Thermal Switching
Superparamagnetic Nanoislands

Superparamagnetic limit: time and thermal stability

\[K_{ani} \cdot V_{\text{particle}} \approx k_B \cdot T \]

Magnetism in reduced dimensions

Surface and core magnetic orders
- high-field irreversibilities
- high saturation fields
- shifted hysteresis loops

Surface effects
- lower coordination number
- broken magnetic exchange bonds
- frustrated magnetic interactions
- surface spin disorder
- reduced \(M \) in ferri-, antiferro-systems
- enhanced \(M \) in metallic ferro-systems

Spin glass? Dead magnetic layer? Bulk-like?
Ensembles vs Single-Particle Properties

Ensembles:
Distributions with respect to nanoparticle size, aspect ratio, crystalline structure, defect distribution, and chemical composition.

Single Particle experiments:
Correlate the electronic, magnetic, and structural properties with the size, aspect ratio, crystalline structure, and chemical composition of each individual particle.

The ability to manipulate a single nanoparticle has an increased potential in device manufacturing.

Courtesy of M. Farle, Uni Duisburg
Single Particle Detection: Techniques Available

<table>
<thead>
<tr>
<th>Technique</th>
<th>(\Delta x) (nm)</th>
<th>E-resolution (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-STM</td>
<td>0.5</td>
<td>< 0.2</td>
</tr>
<tr>
<td>EELS</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Optical Fluorescence</td>
<td>< 5</td>
<td>0.02</td>
</tr>
</tbody>
</table>

XPEEM

<table>
<thead>
<tr>
<th>Technique</th>
<th>(\Delta x) (nm)</th>
<th>System (Individual Particles)</th>
</tr>
</thead>
</table>
| XPEEM | 50 | • InAs (D~50 nm), \(\Delta E/E=0.2 \) eV, Heun et al.
• Fe\(_2\)O\(_3\) (D ~ 10 nm), \(\Delta E/E=0.5 \) eV, Rockenberger et al. |
Soft x-ray Spectromicroscopy

Chemical Selectivity
- Fe, Co, Ni
- Intensity (a.u.) vs. Photon Energy (eV)
- Chemical bonding, electronic properties

Surface and interface sensitivity
- Vacuum, secondary electrons, sample surface
- Photon penetration depth ~ 50 nm
- Electron escape ~ 5 nm depth

Magnetic Contrast: XMCD
- Photon energy (eV)
- TEY (a.u.)
- Magnetic contrast: XMCD
- Atomic magnetic moments

Magnetic Contrast: XMLD
- Photon Energy [eV]
- Intensity [a.u.]
- Antiferromagnets
Soft x-ray Spectromicroscopy

Element specific imaging: PEEM

Co islands, 778.1 eV
Py film, 852.7 eV

Co
Py
Substrate

Magnetization Direction

5 μm
- probing secondary/Auger/photoemission
- spatial resolution: 50 nm
- electron energy resolution: 0.1 eV
- $H_A \approx 30$ mT
- $100 \, K < T < 1500 \, K$
- ultra high vacuum
Cobalt particles: Arc ion cluster source

- particle size tunable between 4-15nm
- size distribution: $\Delta D/D \sim 10-15\%$
- *in situ* deposition

Collaboration with J. Bansmann, Uni Ulm, and A. Kleibert, Uni Rostock

- deposition of Co particles on Si substrates
- coverage: 5-10 particles/μm²
- lithographic markers on substrates
- low percentage dimers/trimers
- crystalline structure

Lithographic markers: L. J. Heyderman, PSI
Elemental Contrast: X-ray PEEM

Co particles D ~ 13 nm oxidized in air

Photon energy 778 eV

Photon energy 770 eV

Image (778 eV)/ Image (770 eV)
Co particles D \(\sim 8\) nm / 8 nm Al capping layer

The lithographic markers are essential to correlate unambiguously the PEEM observations with the size of the particles imaged by the SEM.

Lithographic markers: L. J. Heyderman, PSI
Individual Particles: X-ray Absorption Spectra

Co particles D ~ 8 nm, no capping layer

Movie: 159 images
Total acquisition time: 12 hours.
Co particles D ~ 8 nm, no capping layer

![Graph showing X-ray Absorption: Particle-to-particle variation](image)

Adapted from Regan et al. PRB 64 (2001) 214422
Co particles D ~ 8 nm, no capping layer

Intensity (arb.units)

Photon Energy [eV]

Reference CoO thin film

Adapted from Regan et al. PRB 64 (2001) 214422
• in situ Fe clusters (~ 9 nm) supported on ferromagnetic thin films

• alloy systems, e.g. Fe$_x$Co$_{1-x}$, Fe$_x$Pt$_{1-x}$

• Magnetic transition temperatures on the nanoscale
Conclusions

• X-ray absorption spectra of individual Co particles as small as 8 nm

• Differences in oxide-related features between individual particles were observed

• Changes between the spectra of an individual particle and the ensemble were observed
Collaborators

F. Nolting, Swiss Light Source
Paul Scherrer Institut, Switzerland

J. Bansmann, Dept of Surface Chemistry and Catalysis
Universität Ulm, Germany

A. Kleibert, Institut für Physik,
Universität Rostock, Germany

U. Wiedwald, Dept. Solid State Physics,
Universität Ulm, Germany

L. J. Heyderman, Laboratory for Micro- and Nanotechnology
Paul Scherrer Institut, Switzerland