EMULSIFIED ZERO-VALENT IRON
TREATMENT OF CHLORINATED SOLVENT
DNAPL SOURCE AREAS

Jacqueline Quinn, NASA
Suzanne O’Hara, Thomas Krug, GeoSyntec Consultants;
Christian Clausen, Cherie Geiger, University of Central Florida;
Kathleen Brooks, ASRC
Technology Rationale

- **ZVI PRBs are effective in treating dissolved CVOCs but:**
 - are dependent on dissolution and transport of CVOCs; and
 - do little to reduce the clean up time and long-term monitoring costs.

- **ZVI needs to be in the presence of water to promote reductive dehalogenation → injection of ZVI into a DNAPL source zone will only treat the dissolved phase at the edges of the DNAPL.**

- **EZVI can be used to enhance degradation of DNAPLs by enhancing contact between the DNAPL and the ZVI particles.**
Properties of EZVI

- Emulsion droplets contain iron particles in water surrounded by an oil-liquid membrane.
- EZVI composed of food-grade surfactant, biodegradable vegetable oil, water, and ZVI (nano- or micro-scale iron).
Properties of EZVI

- EZVI’s exterior oil membrane has hydrophobic properties similar to DNAPL, and is therefore miscible with the DNAPL.
- CVOCs in DNAPL diffuse through the oil membrane and undergo reductive dechlorination in the presence of the ZVI in the interior aqueous phase.
- In addition to abiotic degradation due to ZVI, EZVI contains vegetable oil and surfactant which will act as long-term electron donors; promoting anaerobic biodegradation.
Properties of EZVI
In Contact with DNAPL

DNAPL
dyed red

DNAPL with micro-scale ZVI

DNAPL with EZVI
• EZVI was developed to treat DNAPLs, however it will also treat dissolved phase components.

• Although design of injection method will be to maximize the contact between EZVI and DNAPL, any EZVI located near DNAPL will also degrade the dissolved-phase CVOCs, enhancing mass dissolution from the DNAPL.
EZVI Injection Set-Up Within PTA

- EZVI injected in 8 injection wells
- Injection wells along edge of plot directed inwards
- Injection wells in center were fully screened
- Injection at 2 discrete depth intervals in each well
EZVI Injection Set-Up Within PTA

No Pulsing

With Pulsing
Soil Core Samples:

- Stated objective of 50% removal of total TCE
- Significant reduction of TCE in four months (>80%) where EZVI was present
- Average reduction of 58%
- EZVI migrated to shallow intervals with PPT injection
Results of Demo at LC34

- **Groundwater Samples:**
 - Significant reduction (60 to 100%) of TCE in target depths.
 - Reduction of 56% in the Mass Flux.
 - from 19.2 mmoles/ft²/day down to 8.5 mmoles/ft²/day

- Overall results met the stated objective but were lower than believed possible due to injection control issues.
 - Performed follow-on injection testing and found direct injection and pneumatic injection had best performance for use with EŽVI.

- Elevated cis-1,2-DCE, VC suggest biodegradation due to oil as an electron donor may also be a significant bonus.
Further Lab Testing of EZVI

• Lab tests conducted to evaluate treatment of dissolved and DNAPL-phase TCE (10 x saturation) using:
 – Active Control
 – Vegetable oil & surfactant (Emulsion)
 – Nano-scale zero-valent iron (nZVI)
 – Emulsified zero-valent iron (EZVI)
• Monitor VOCs, DHG and Chloride
• Work funded by ESTCP
Chloride Production

Dissolved-Phase
- TCE completely degraded using both nZVI and EZVI.
- Both achieved similar results in the same time period.

DNAPL-Phase
(data to date)
Active Control
- TCE at saturation concentration
- No degradation by-products observed (no DHG or chloride)

Veg Oil Emulsion Treatment
- TCE stable at ~30% of saturation concentration
- No degradation by-products observed (no DHG or chloride)
- DNAPL sequestered in oil phase – equilibrium concentrations lower than for pure phase DNAPL
nZVI Treatment
- TCE stable at saturation concentration
- Degradation by-products observed (ethane and ethene)
- Chloride production indicates degradation of ~65% of TCE

EZVI Treatment
- TCE ~10% of saturation concentration and dropping
- Degradation by-products observed (ethane and ethene)
- Chloride production indicates degradation of ~62% of TCE
Conclusions of Lab Test

- Veg Oil Emulsion drops TCE concentration due to sequestration (no degradation).
- nZVI reduces mass of TCE due to treatment but no drop in concentration of TCE.
- EZVI benefits from sequestration due to oil plus degradation due to nZVI (drop in concentration and reduction in mass).
- Impacts of biodegradation not significant in these tests which utilized DI water and no soil (expect to see biodegradation with emulsion and EZVI).