Nanoiron in the Subsurface:
How far will it go and how does it change?

G. Lowry, Y. Liu, N. Saleh, T. Phenrat, B. Dufour, R. Tilton, K. Matyjaszewski
Carnegie Mellon University

T. Long and B. Veronesi
National Health and Environmental Effects Research Laboratory, US EPA
Nanoiron treatment of source or plume is possible

$\text{TCE} + \text{Fe}^0 \rightarrow \text{HC Products} + \text{Cl}^- + \text{Fe}^{2+}/\text{Fe}^{3+}$
Conceptual Model

Potential human exposure

Goal: Maximize treatment, and minimize unwanted exposures

Need to understand transport and fate of nanoiron to optimize treatment and understand potential risks
Does Nanoiron Pose a Risk?

• Exposure
 – What are we potentially exposed to?
 • What Fe phases and nanoparticle sizes?
 • Does nanoiron change over time?
 • How quickly does it change?
 – How much are we exposed to?
 • Nanoiron transport distance?
 • What hydrogeochemical factors control it?

• Toxicity
 – Is there toxicity or ecotoxicity?
 • What conditions lead to toxicity?
Types of Nanoiron

RNIP
- Fe\(^0\) core
- Fe\(_3\)O\(_4\) shell
- FeOOH \(\rightarrow\) Fe\(^0\) \(\rightarrow\) Fe\(^0\)/Fe\(_3\)O\(_4\)

Fe(B)
- Fe\(^0\) core
- Borate shell
- Fe\(^{2+}\) + BH\(_4^-\) \(\rightarrow\) Fe\(^0\)/FeB\(_x\)/Na\(_2\)B\(_4\)O\(_7\)

Nanoiron After Reaction with TCE in Water

RNIP + TCE/H₂O

Fe(B) + TCE/H₂O
Fe⁰ Corrosion Rate (pH=8-9)

RNIP

Fe⁰/Fe₃O₄ + H₂O → Fe₃O₄ + H₂

Fe(B)

Fe⁰/FeBₓ/Na₂B₄O₇ + H₂O → Fe-oxide + H₂ + B₄O₇²⁻

~1 year

~1-2 weeks
Fe⁰ Corrosion Rate Depends on pH

RNIP

~2 weeks
pH=6.5

~1 year
pH=8.9
How long is Nanoiron Nano?

Concentration=1.9 mg/L
Stable size=~400 nm
Time=15 minutes

Concentration=79 mg/L
Stable size=~5000 nm
Time=10 minutes
Nanoiron Transport is a Filtration Problem

Flocculation and straining (cake filtration)

Particle-DNAPL Interactions (Attachment)

Particle-Media Interactions (Attachment)

Uniqueness - High particle concentration and flow velocity
Nanoiron Aggregation Affects the Ability to Transport

Nanoparticles are aggregated and filtered through a monolayer of sand in a micro-fluidic PDMS cell.

Time=1 min

Time=10 min

Micro-fluidic PDMS cell

Nanoiron aggregates are filtered
Surface Modifiers Increase Transportability

1. Potential Surface Coatings
 - Polyelectrolyte
 - Surfactants
 - Cellulose/polysaccharides

2. Enhanced transport
 Charge and steric stabilization minimize particle-particle and particle-media interactions

3. Affinity for DNAPL
 Surface coatings provide affinity for NAPL
Effect of Different Modifiers

\([\text{Fe}^0] = 3 \text{ g/L}\)

Potential to select transport distance
Hydrogeochemical Effects on Nanoiron Transport

Transportability is a strong function of site hydrogeochemistry.

Systematic evaluation of hydrogeochemical effects is needed.
Nanoiron Toxicity?

Why suspect that ZVI causes OS?
• Surface chemistry
• Reactive oxygen species
• Literature-daphne, fish ….. glutathione depletion

Why the brain?
• Serious consequences from damage
• Target of OS-lipid content…high energy use
Nanoiron Toxicity

Mammalian brain macrophage (microglia)

✓ Fe⁰ and modified-Fe⁰ (1-30 ppm)
✓ Whole-cell and genomic responses
 ✓ OS-specific endpoints
 ✓ TEM, confocal microscopy
Fe0-induced Oxidative Stress in CNS Cells

Response of Microglia (BV2) and Mesencephalic Neurons (N27) to Iron Nanoparticles (1-30 ppm)

Future Studies: Apo E Mice and Medaka Fish
Conclusions

• Potential toxicity risk warrants careful evaluation

• Fe0 fairly rapidly oxidizes to Fe-oxides
 – Fe0 lifetime ranges from weeks to a year
 – Lifetime depends on nanoiron properties and geochemical conditions (e.g. pH)
 – Unmodified nanoiron rapidly aggregates, size is concentration dependent
Conclusions

• Transport of unmodified nanoiron in porous media is limited.

• Particle surface chemistry strongly influences transportability
 – function of modifier type and geochemical conditions
 – May be predictable from filtration/colloid transport theory
 – Matching surface modifications to site geochemistry offers the potential for well-controlled placement
Acknowledgement

• U.S. Department of Energy-Environmental Management Science Program (DE-FG07-02ER63507)
• U.S. EPA-STAR (R830898)
• CMU project team