ULTRAFAST SPECTROSCOPY OF CHEMICALLY SYNTHESIZED SEMICONDUCTOR NANOPARTICLES

M. CHERGUI
Lab. of Ultrafast Spectroscopy
EPF-Lausanne, SB/ISIC
CH-1015 Lausanne
Switzerland
Engineerable Optical Properties: CdSe Nanodots

size: 2.3 nm
λ = 470 nm

size: 5.5 nm
λ = 620 nm

*Murray, C.B.; Norris, D.J.; M. Bawendi, M.G. J. Am. Chem. Soc. 1993, 115, 8706
Some potential applications

- Biological tags for imaging (Alivisatos et al)
- Electroluminescence from monolayers of CdSe NCs in organic devices (Coe et al, Nature 2002)
- Optically pumped CdSe NC’s lasers (Eisler et al, APL 2002)
- Microring lasing (Malko et al, APL 2002)
- Solar Energy research
- Quantum computing and information
Chemical Synthesis of QDs

- Inexpensive preparation, produces large quantities
- Chemical flexibility: II-VI, III-V, IV-VI elements (CdSe, CdS, CdTe, PbS, InP, PbSe, …)
- Control of Size: Monodisperse (size distribution ≤ 5%)
- Control of shape: Dots, Rods, Tetrapods, Rice grains, Cubes, etc…
- High luminescence quantum yield up to 80%
- Functionalizeable surfaces for various applications
- Doping, immobilization in polymer matrices
- Self assembly in 2D and 3D-superlattices with controlled inter-particle spacing.
Control of Size: Monodisperse (size distribution ≤ 4%)
Chemical Synthesis: Control of Shape and Lattice structure

Hexagonal lattice (Wurzite)

Cubic lattice (Zinc blende)

Hexagons

Tetrapods

Cubes

Tetrahedra

Nucleation in ZB & growth in W

Nucleation in ZB & growth in W

Nucleation & growth in W form

Nucleation in ZB & growth in W
Control of Shape: Dots, nanorods, tetrapods, etc...

CdSe Nanorods

PbSe Nanocubes
Control of lattice structure
Hybrid ZB-W CdSe nanorods

Li & Wang, Nanoletters (2003)
Chemical synthesis of CdSe Nanoparticles

Factors which affect the shape of the nanocrystals:

1. Temperature
2. Type of surfactant, and its concentration
3. Monomer concentrations

Se powder is dissolved in TOP injected rapidly to a hot solution of CdO dissolved in surfactant or a mixture of surfactant such as TOPO, HPA, TDPA or ODPA at 300 C

After size selective precipitation, the obtained particles dissolved in Hexane

Thermodynamic control:

Zinc blende is the most stable form at lower temperature, Wurtzite is more stable in high temperature

Kinetic control:

Some polar facets are more stable in the presence of polar surfactant

Murray, C. B.; Norris, D. J., Bawendi, M.G., JACS 1993;
Xiaogang, P.; Manna, L.; Weidong Yang, Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P.,
Optical Properties

EFFECTS OF QUANTUM CONFINEMENT:
- Tunability of band gap
- Discretization of energy levels
- Enhanced oscillator strengths

Tonti et al, NanoLetters (submitted)
Emitted vs Scattered Light

- Pristine sample (1-T)
- Pristine sample (emitted light)
- Sample with NQ (emitted light)
- Solvent scattering
No changes in ns decay times over this power range!

Son et al, PRL 2004
Summary

• Continuum due to absorption
• Continuum not due to ionization, or barrier (due to ligands) for electron escape too high.
• Intraband relaxation too fast (< 1ps) to allow for other channels
• Electron acceptors: Quenching of luminescence occurs at band edge states.
• High power excitation does not change lifetimes in nsec range. However, total yield of luminescence levels off.
• Dot dependence of luminescence yield for high powers suggests an Auger ionization channel.
• Luminescence quantum yield does not follow lifetime changes, i.e. sub-ensemble of dots that fluoresce.
The band edge structure

The eight-fold degeneracy of the lowest excited state \((1S_e, 1S_{3/2})\) in spherical dots, lifted by:
1- The particle shape
2- The crystal field of the hexagonal lattice
3- electron-hole exchange interaction

Electron: \(s=1/2\) (\(m_s=\pm1/2\))
Hole: \(F=L+J\)
Excitons: \(N=F+s\) (\(N_m=\pm2, \pm1, 0\))
\(|N, N_m>\)

One colour Pump-Probe transient absorption measurements

$\lambda_{\text{pump}} = 595 \text{ nm}, 570 \text{ nm}$ (far red edge of the first absorption band)

Dot radius $\sim 2 \text{ nm}$

$\Delta t = 50 \text{ fsec}$ (55 meV spectral width)
- Signal mainly due to bleaching
- 210 cm\(^{-1}\) (165 fs) oscillation: LO mode of CdSe
 (Mittleman et al, PRB (1994))
- Oscillations due to Impulsive Raman scattering and/or Excited state absorption contributions
- Damping time of coherences \(\leq 1\) ps
- Anisotropy decays in \(< 1\) oscillation and stabilises at finite level
Summary

• Damping of oscillations due to multimode character of LO phonon (uncertainty $\Delta \omega$ introduces different frequencies)

• Damping of anisotropy due to changes in e.s. wavefunction in < 1 oscillation. At higher energy state mixing more dramatic, i.e. bigger loss of anisotropy. Thus interstate relaxation at band edge is very fast (< 160 fs). Implies that vibrational coherences are in the e.s.
Multiexcitonic effects

• In bulk, if $\rho_{\text{excitons}} > 1$ exciton/excitonic volume \rightarrow metallic e-h plasma and reduced Coulomb interaction (e.g. SC-to-metal phase transition in Si, Johnson et al, PRL 2003)

• In QD’s high confinement and several excitons are squeezed.

• Multiparticle interaction due to wf overlap

• Auger relaxation processes (Klimov et al, Zunger et al)
Multiexciton formation

uncorr. electron and hole

coumb interaction

exciton $|x\rangle$
biexciton $|xx\rangle$
formation
Ground State Biexciton

Single exciton

Excited biexciton

Charged biexciton

Triexciton

Charged triexciton

Tetraexciton

• High power excitation: >1 exciton/dot
• High time resolution: Auger processes shorten the lifetime of Multiexcitons

→ Power dependence studies
→ Ultrafast time resolved photoluminescence
\(\tau \leq 20 \text{ ps}\)

\(\tau \leq 5 \text{ ps}\)

\(\tau \leq 10 \text{ ps}\)

\(\tau \leq 10 \text{ ps}\)

Wang et al, PRL 2003
Experimental set-up: Broad Band Femtosecond Photoluminescence up-conversion set-up

Wavelength range: 480 to 730 nm

Time resolution: ~ 70 fs
Time-resolved luminescence of CdSe NDs of 3 nm diameter
Power dependence of Photoluminescence at $t = 1$ ps
Typically: 1-15 e-h pairs/dot
Spectral decomposition

Neutral Biexciton

12-50 psec

Single exciton

~25 nsec

Charged biexciton

5 psec

Triexciton

3-5 psec

Bonati et al, PR B (submitted)
Summary

- Observation of:
 - neutral Biexcitons: $\Delta E \approx 25 \text{ meV}$, $\tau \sim a^3$
 - Charged biexciton: $\Delta E \approx 130 \text{ meV}$, $\tau \sim a^3$
 - Neutral triexciton: $\Delta E \approx 70-150 \text{ meV}$ for decreasing a
 - Exciton and trion: Almost overlapping

- Lifetimes and energies in agreement with Zunger and co-workers PRL 2003, PR B 2001
Acknowledgments

Camilla Bonati
Awos Al Salman
Mona Mohamed
Andreas Tortschanoff
Dino Tonti
Frank van Mourik

of the

quantum photonics
National Centre of Competence in Research

FNS SNF
Fonds national suisse Schweizerischer Nationalfonds
Fondo nazionale svizzero Swiss National Science Foundation