Methods and Characterization of Ultrafine Particles in Various Engine Exhaust Aerosols

Alberto Ayala

Manager
Emission Control Technology Research
California Air Resources Board

Adjunct Assist. Prof.
Mechanical and Aerospace Engineering
West Virginia University
Acknowledgements

- Jorn Herner
 Air Resources Engineer
 Emission Control Technology Research
 California Air Resources Board
 PhD Candidate
 Civil and Environmental Engineering
 University of California, Davis

- CARB Staff at Emissions Laboratories

- TSI Inc. kindly provided some instruments for our studies

DISCLAIMER
The statements and opinions expressed in this presentation are solely the author’s and do not represent the official position of the California Air Resources Board. The mention of trade names, products, and organizations does not constitute endorsement or recommendation for use.
Overview

- The universe of ultrafine particle sources
- CARB’s research priorities and characterization of ultrafine particle emissions
- Challenges associated with measurement
- California’s contributions to the European PMP advances
The anthropogenic sources of ultrafine particles are numerous (stationary, mobile, industrial, occupational, atmospheric conversion).

Biswas and Wu, J. Air & Waste Manage. Assoc. 2005
Mobile sources are a key focus

Ultrafine particle emissions:
- Not a “diesel-only” problem
- Ultrafine particles originate almost exclusively from combustion processes
- Diesel, gasoline, LNG, LPG, CNG, jet aircraft engines have all been identified as sources of ultrafine particles emissions
The technology roadmap to lower HD diesel engine emissions is clear

• Ultrafine particles constitute a small fraction of PM mass, but dominate the fraction of particle number (and surface area)

• PM mass emission control may not equal particle number emission control

• Ultrafine particles have different chemical composition from fine or coarse particles. They consist almost exclusively of organic and elemental carbon*

• “Ultrafine particles” still an emerging environmental area

• Agreed-upon methodologies for measurement of ultrafine particle emissions do not exist

* Herner et al., J. Air & Waste Manage. Assoc. 2005
Under the research priorities*
“Reduction of emissions and characterization of air pollutants,” CARB has significant on-going investigations of emission control technologies and methods for sampling for ultrafine particles

*2001-2010 Strategic Plan for Research
April 2003 Update
Ultrafine Particle Emissions for CNG and Trap-equipped Diesel

- Comparison of cycles (cycle mean concentrations)
- Particle number distribution peaks at 8nm for CNG and at 80nm for trap-equipped diesel
- Average concentrations vary between cycles

* Error bars represent 1 standard deviation of repeated samples.

Oxidation Catalyst Control on CNG Emissions

Mini-diluter

Cummins w/Oxi Cat
DDC CNG-3 w/Oxi Cat
DDC CNG-3

No OC
With OC

55 mph Cruise/No correction for DR

Ayala & Holmen, CRC On-Road Emissions Workshop, San Diego, 2003
Strong Dependence on Engine Operation

(OC-equipped CNG engine)

Idle
(No correction for DR)

Transient Cycle (CBD)
(No correction for DR)

Each color represents one cycle

Ayala & Holmen, CRC On-Road Emissions Workshop, San Diego, **2003**
DPF reductions confirmed in laboratory tests

- Partial flow
- No heating
- Two Stage dilution
- Low dilution ratios (8x8)

Ayala and Herner, *J. of Lubricants and Fuels*, SAE Transactions, 2005
New fast sizing instruments allow for examination of transient emissions

No correction for dilution
Note different scales

Ayala and Herner, *J. of Lubricants and Fuels*, SAE Transactions, 2005
PM is operationally defined*

Laboratories for certification of compliance with mass emission standards

Different measurement methods

Nucleation
Condensation
Coagulation
Evaporation

Exposure

Different vehicle emission behavior

*CFR Part 1065
Nucleation Mode Particles in Exhaust Emissions and in the Ambient

Effect of DPF

• Some research evidence suggests that a DPF can cause higher numbers of ultrafine particles while still reducing PM (nucleation of volatile material)

• Effect of sampling conditions and application to real world conditions poorly understood

H. Burtscher / Aerosol Science 36 (2005) 896–932

Particle numbers measured on the roadway appear to be different than laboratory measurements
Advancing international cooperation with new EU-DG-JRC & CARB partnership

MOU subject areas:

• Mass emission measurement (in laboratory and on board vehicle)
• Ultrafine particle emissions & PMP
• Source apportionment
• Climate change
The PMP Protocol

- New proposed solid particle number emission standard for CI and GDI light-duty vehicles
- Proposed protocol for measurement
- Counting solid particles is more accurate than gravimetric mass weighing

Picture courtesy of P. Dilara
CARB Evaluation of the European PMP Protocol on a Trap-Equipped Diesel Vehicle

Significant number of sub-30* nm particles

* 30nm and smaller = nucleation mode particles

Herner and Ayala, CRC On-Road Emissions Workshop, San Diego, 2006
Post trap particle counting statistics appear superior to gravimetric measurement

Percent Deviation from Average – CBD

Gravimetric N=10, Particle count N=2. Particle count measured raw exhaust according to PMP.

Herner and Ayala, CRC On-Road Emissions Workshop, San Diego, 2006
Summary

• The sources of ultrafine particles are numerous. Mobile sources is one area of keen interest.

• Ultrafine particles constitute a small fraction of PM mass, but dominate the fraction of particle number.

• Some credible research evidence suggests that PM mass emission control may not equal particle number emission control.
 – *Is the laboratory measurement of ultrafine particles capturing the ultrafine particles found on the road?*
 – *Agreed-upon methodologies for measurement of ultrafine particle emissions are needed*

• New instrumentation offers significant potential.

• European developments are an important advancement that foster debate and promote progress.